

EST.1943

Los Alamos National Laboratory LA-UR-20-26383

Porting EOSPAC6 to Sierra

Anna Pietarila Graham David Pimentel Sept 2020

Topics

- 1. EOSPAC6 Overview
- 2. Porting goals and strategy
- 3. Current status and performance
- 4. Summary and next steps

Los Alamos National Laboratory 9/7/20 | 3

EOSPAC6

- Equation of state library
 - Used to access the Sesame equation-of-state data library and interpolate the data
 - Additional capabilities: mixing, smoothing
 - Development started in 1982, currently at version 6 (2001)
 - Written in C, called from Fortran & C client codes
- Deployed on all LANL HPC systems: 5 compilers, 16 architectures (excluding classified systems)
- Used by multiple large LANL physics codes
- Testing and verification
 - Nightly testing on multiple platforms
 - ~450 regression tests

(Simplified) client code use of EOSPAC6

(Simplified) client code use of EOSPAC6

Porting strategy

- From client code point of view:
 - Goal: Most physics computations ported to GPU
 - EOSPAC calls embedded in other code
 - → relevant data already on the GPU
 - →Work with device pointers as much as possible
 - Minimize data transfers between host and target

(Simplified) client code use of EOSPAC6

Porting strategy

OpenMP offloading

- Portable & easy to maintain
- 2) No offload specific kernels need to be written

```
#ifdef DO_OFFLOAD
#pragma omp target if(useGpuData) is_device_ptr(var)
{
#pragma omp teams distribute parallel for
#endif /* DO_OFFLOAD */
```

- 3) Verification with client code: Shaped charge test setup from Pagosa
 - Representative of typical code path used by client code
- Each client code MPI rank has its own instance of EOSPAC

Current status

- Refactored code e.g.
 - Refactor subroutines to do multiple points instead of single point
 - Rewrite of extrapolated data section
 - Use flat arrays instead of multi-dimensional arrays:
 EOS_REAL *F_flat = !useGpUData?&F[0][0]:&F[0];
- Ported code path used by Pagosa regression test
 - Interpolation & search routines
 - Misc. bits: unit conversion etc.
 - Offloaded code passes tests: EOSPAC6 and Pagosa regression tests

Performance of eos_Interpolate

API called by client code:

```
void eos_Interpolate
(EOS_INTEGER *tableHandle, EOS_INTEGER *nXYPairs, EOS_REAL *xVals, EOS_REAL *yVals, EOS_REAL *fVals, EOS_REAL *dFx, EOS_REAL *dFy, EOS_INTEGER *errorCode);
```

interpolation & search, bookkeeping, unit conversion, extrapolation checking (not ported)

Performance: CPU release vs offload

Power9

CPU: serial GPU: v100

IBM XL OpenMP 4.5

Flags:

- -O -qfloat=nomaf
- -qstrict=precision

GPU:

-qoffload -qsmp=noopt

Performance: add CPU w/o extrapolation checking

Performance: add optimized offload

GPU:
-qoffload –qsmp=omp

Performance

EOSAPC6 GPU memory usage (single Sesame table)

Performance bottleneck: extrapolation warnings, error checks (on CPU)

```
eos Interpolate
66.79% 313.691s
66.79% 313.691s
                  | eos InterpolateEosInterpolation
64.18% 301.421s
                  | eos InterpolateRecordType1
64.18% 301.421
                  | | eos InterpolateRecordType1
37.73% 177.2s
                       eos CheckExtrapRecordType1 using extrapolationBounds
16.72% 78.5102s
                       eos RationalInterpolateXY
10.49% 49.2501s
                       eos srchdf
8.35% 39.2101s
                         eos GetStandardErrorCodeFromCustomErrorCode
4.31% 20.25s
                       eos BiRationalInterpolate
8.84% 41.5201s
                       eos RationalInterpolate
5.35% 25.1501s
                       eos srchdf
4.28% 20.09s
                         eos GetStandardErrorCodeFromCustomErrorCode
3.09%
       14.52s
                        eos RationalInterpolate4
```

237s of 314s (75%) spent in error and warning code checks

Summary

- Completed proof of concept version using OpenMP offloading
 - Passes validation tests
 - CPU-GPU break-even point: >2. x 10⁵ points
 - 135X speed-up when nXYPoints > 10 million
- Identified performance bottle neck in extrapolation checks

Future work

- Port rest of code & create an alpha-release of GPUenabled library
- Address extrapolation checking
 - New user option to disable checking unless API eos CheckExtrap is called from client code
- Further performance improvements
 - Temporary array memory usage
 - Optimization of individual kernels

Over 70 years at the forefront of supercomputing

Los Alamos National Laboratory 9/7/20 | 20